## Lecture Notes on Continuum Mechanics of Solids(P402), M.Sc. Physics

## **Prepared By:**

Allen Lobo Asst. Professor Dept. of Physics The Oxford College of Science, Bangalore

### Unit 1: Continuum Mechanics of Solid Media -

#### <u>Notes</u>

#### **Review of Cartesian Tensors:**

Understanding Tensors: Qualitative & Quantitative approaches to understand tensors: a mathematical object which remains invariant under a coordinate transformation. Such objects are defined by their transformation properties. Tensors also are the generalisation of scalars and vectors.

| Object  | No. of magnitudes | No. of direction senses | No. of components $(3^n)$ | Rank<br>(n) |
|---------|-------------------|-------------------------|---------------------------|-------------|
| Scalar  | 1                 | 0                       | 1                         | 0           |
| Vectors | 1                 | 1                       | 3                         | 1           |
| Dyads   | 1                 | 2                       | 9                         | 2           |
| Triads  | 1                 | 3                       | 27                        | 3           |

And so on.

Tensors are characterised by their invariance under coordinate transformations.

### **Identifying Tensors in physics**

1. Stress Tensor:

The expression of stress (T),

 $d\mathbf{F} = \underline{\mathbf{T}} \cdot d\mathbf{S}$ , dF and dS are force and surface elements respectively.  $\underline{\mathbf{T}}$  is a rank 2 tensor, to which dS is multiplied using the inner product.

- 2. Magnetic Flux Density:
  - In the relation of Magnetic Field B with Magnetization H
  - $\mathbf{B} = \mathbf{\mu} \cdot \mathbf{H}$ ,  $\mathbf{\mu}$  is the permeability tensor of rank 2.
- 3. Angular Momentum
  In the definition of Spin angular momentum L,
  L= I . ω, I is the moment of inertia tensor.

Contraction of a rank using a tensor - Inner Product

Tensors can be multiplied to other tensors using inner (dot) products. Under such multiplication, the rank of the product reduces by 2.

Let A and B be two tensors of ranks n & m respectively.

A.B = C, another tensor whose rank is equal to (n+m-2).

### Suffix Notation and the Summation Convention

We will consider vectors in 3D, though the notation we shall introduce applies (mostly) just as well to n dimensions. For a general vector

$$x = (x^1, x^2, x^3)$$

we will refer to  $x^{i}$ , the i th component of x.

The index i may take any of the values 1, 2 or 3, and we refer to

vector  $x^{i}$  = the vector whose components are  $(x^{1}, x^{2}, x^{3})$ .

However, we cannot write  $x = x^{i}$ , since the LHS is a vector and the RHS a scalar. Instead, we can write  $[x]^{i} = x^{i}$ , and similarly  $[x + y]^{i} = x^{i} + y^{i}$ .

The expression  $x^{i} = y^{i}$  implies that y = x; the statement in suffix notation is implicitly true for all three possible values of i (1,2,3).

### **Transformation of a vector**

Let  $\{x', y'\}$  axes be different from  $\{x, y\}$  by a simple rotation. Then the components of a vector A in the two coordinate systems are related by

A ' 
$$x = Ax \cos(x', x) + Ay \cos(x', y)$$
  
A '  $y = Ax \cos(y', x) + Ay \cos(y', y)$ ,

where (x', y) denotes the angle between the x' and y axis.



Using the index notation, it can also be written

$$A' 1 = A1 \cos(x' 1, x1) + A2 \cos(x' 1, x2)$$
  
A' 2 = A1 cos(x' 2, x1) + A2 cos(x' 2, x2)

In three-dimensions, the components of a vector are transformed under rotation as follows

```
A' 1 = A1 \cos(x' 1, x1) + A2 \cos(x' 1, x2) + A3 \cos(x' 1, x3)

A' 2 = A1 \cos(x' 2, x1) + A2 \cos(x' 2, x2) + A3 \cos(x' 2, x3)

A' 3 = A1 \cos(x' 3, x1) + A2 \cos(x' 3, x2) + A3 \cos(x' 3, x3)
```

Converting this in a matrix,

$$\begin{pmatrix} A_{1}^{1} \\ A_{2}^{1} \\ A_{3}^{1} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \\ \end{pmatrix} \begin{pmatrix} A_{1} \\ A_{2} \\ A_{3} \\ A_{3} \end{pmatrix}$$

$$\begin{pmatrix} C_{1j} = \cos(\pi i^{1}, \pi j) \end{pmatrix}$$

#### **Orthogonality of Cik**

Since the length of vector A must be invariant, i.e., the same in both coordinate systems, (A' i).(A' i) = (Ai).(Ai)

### (A' i).(A' i) = [Cik](Ak)[Cij](Aj) = [Cik][Cij](Ak)(Aj) = (Aj)(Aj).

Introducing the Kronecker delta  $\delta kj$  we have,

$$[Cik][Cij] = \delta kj$$

This property is called the orthogonality of the transformation matrix C, which is a generalization of a similar concept in vectors.

## **Contra and Covariant Transformations**

The Transformation matrix used above [Cij] is of two types, in general:

- 1. Contravariant
- 2. Covariant

Contravariant type transformation:

$$\begin{pmatrix} u' \\ x^{2^{1}} \end{pmatrix} \sim \begin{pmatrix} proj d x' cn x' & proj d x' on x^{2} \\ proj d x^{2} cn x' & proj d x^{2} cn x^{2} \end{pmatrix} \begin{pmatrix} u' \\ u^{2} \end{pmatrix}$$

$$\chi^{\mu'} = (\chi^{\mu})^{\nu}, (\chi^{\mu})^{\nu} = (\chi^{\mu})^{\mu}, (\chi^{\mu})^{\nu} = (\chi^{\mu})^{\mu}, (\chi^{\mu})^{\mu} = (\chi^{\mu})^{\mu}, (\chi^{\mu})^{\mu} = (\chi^{\mu})^{\mu}, (\chi^{\mu})^{\mu} = (\chi^{\mu})^{\mu}, (\chi^{\mu})^{\mu} = (\chi^{\mu})^{\mu$$

Covariant type transformation:

$$\begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \sim \begin{pmatrix} proj d \mathbf{x}^{1} & \mathbf{x}^{1} \\ proj d \mathbf{x}^{2} & \mathbf{x}^{2} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix}$$

$$u_{\mu} = \left( \begin{pmatrix} -1 \\ \mu \nu \end{pmatrix}^T u_{\nu} \right)^T \left( \begin{pmatrix} -1 \\ \mu \nu \end{pmatrix}^T = proj d u_{\nu} en u_{\mu}^{\dagger}$$

## **Definition of a Cartesian Tensor**

- A tensor T of rank n is an array of components denoted by Tijk...m with n indices ijk .... m.
- In three dimensional space T has 3<sup>^</sup>n components.
- The defining property of a cartesian tensor is the following law : From coordinate system S to S' by a rotation, the components of a tensor transform according to  $T' ijk...m = [Cis][Cjt][Cku] \cdots [Cmv]Tstu...v.$
- As special cases, a scalar is a zero-th rank tensor T' = T.
- A vector is a first rank tensor which is transformed according to T' i = Ciil.Ti
- A second rank tensor is transformed according to T'ij = [Cis][Cjt]Tst.

# **The Quotient Law**

A set of  $3^n$  numbers form the components of a tensor of rank n, if and only if its scalar product with another arbitrary tensor is again a tensor.

This is called the quotient law and can be used to check whether a set of numbers form a tensor.

## **Tensor Algebra**

(a) Addition: The sum of two tensors of equal rank is another tensor of the same rank.

(b) Multiplication. (A tensor of rank b) times (a tensor of rank c) = a tensor of rank b + c with 3b+c components Eij...krs...t = Aij...kBrs...t.

(c) Contraction : If any pair of indices of an n-th rank tensor are set equal and summed over the range 1,2,3, the result is a tensor of rank n-2.

Consider the relation

# $dF = T \cdot dS$

**dF** is a vector i.e. a tensor of rank 1  $\mathbf{T}$  is a dyad i.e. a tensor of rank 2 **dS** is a vector i.e. a tensor of rank 2 Rank of dF = (Rank of T) + (Rank of dS) - 2 (Since T.dS is a dot product) 1 = 2 + 1 - 2

Thus a scalar product is the result of multiplication and contraction

# Summary:

1. All scalars are not tensors, although all tensors of rank 0 are scalars

2. All vectors are not tensors, although all tensors of rank 1 are vectors

3. All dyads or matrices are not tensors, although all tensors of rank 2 are dyads or matrices

4. The product of a tensor and a scalar (tensor of rank 0) is commutative. The pre-multiplication of a given tensor by another tensor produces a different result from post-multiplication; i.e., tensor multiplication in general is not commutative.

9. The rank of a new tensor formed by the product of two other tensors is the sum of their individual ranks.

10. The inner product of a tensor and a vector or of two tensors is not commutative.

11. The rank of a new tensor formed by the inner product of two other tensors is the sum of their individual ranks minus 2.

12. A tensor of rank n in three-dimensional space has 3n components.

13. Tensors are described by their transformation properties

14. Transformations are of two types - Contravariant and Covariant transformations